Quantum Key Distribution (QKD) Using Imperfect Quantum-Dot Single-Photon Sources

Figure: Concept of two QKD protocols based on a high rate, high collection efficiency SPS with imperfect purity.

This work was performed, in part, at the Center for Integrated Nanotechnologies.

U.S. DEPARTMENT OF Office of Science

Scientific Achievement

Demonstrated two simple-to-implement QKD protocols that allow practical, far-from-ideal sub-Poissonian photon sources to outperform state-of-the-art weak coherent states (WCS).

Significance and Impact

This study showed single-photon purity is not required for superior QKD.

Research Details

- Engineered photon statistics of a biexciton-exciton cascade in roomtemperature single-photon sources based on giant colloidal quantum dots coupled to nanoantennas.
- Used truncated decoy-state protocol or a heralded-purification protocol to increase the maximal allowed channel loss for secure-key creation exceeding even that of ideal WCS by more than 3 dB.

Bloom, Y.; Ordan, Y.; Levin, T.; Sulimany, K.; Bowes, E. G.; Hollingsworth, J. A.; Rapaport, R. Decoy-State and Purification Protocols for Superior Quantum Key Distribution with Imperfect Quantum-Dot-Based Single-Photon Sources: Theory and Experiment. *PRX Quantum*. 2025.

