

Revealing Progressive Degradation of Cobalt Oxide Nanoparticles During Thermochemical Redox Cycling

Scientific Achievement

Correlative environmental transmission electron microscopy (TEM) enabled operando study of thermochemical cyclability of nanoscale thermal energy storage materials under realistic operating conditions.

Figure: Operando STEM-EELS reveals that sintering-driven densification impairs thermochemical cyclability.

Work was performed, in part, at the Center for Integrated Nanotechnologies.

Office of
Science

Van Winkle, M.; House, S.D.; Peng, Y; Chen-Wiegart, K.; Jungjohann, K.; Mangum, J.S.; Revealing Progressive Degradation of Cobalt Oxide Nanoparticles During Thermochemical Redox Cycling via Operando STEM-EELS. *Nano Letters*. 2025.

Sandia
National
Laboratories

NATIONAL
LABORATORY
OF THE ROCKIES

degrees
U.S. DEPARTMENT OF ENERGY
Degradation Reactions in
Electrothermal Energy Storage

<https://science.osti.gov/>