Symmetry-Based Classification of Exact Flat Bands

Figure: This shows how applying special strain patterns to a material can produce multiple perfectly flat electronic bands, where electrons behave as if they have no kinetic energy.

Work was performed, in part, at the Center for Integrated Nanotechnologies.

Scientific Achievement

Development of a new way to understand how completely flat energy bands — key to many exotic quantum behaviors —can form in advanced layered materials known as moiré systems.

Significance and Impact

This work provides a clear roadmap for creating and controlling flat energy bands in quantum materials, which are essential for realizing exotic phases like topological states. It opens new paths for engineering next-generation electronic and quantum devices.

Research Details

- Developed a symmetry-based classification for exact flat bands in single and bilayer moiré materials with Dirac or quadratic band crossings.
- Constructed exact wavefunctions demonstrating that these flat bands can have ideal quantum geometry and a total Chern number of 1.
- Linked the geometry of wavefunctions (zeros at high-symmetry points) to the emergence of topological flat bands.
- Demonstrated that groups of these flat bands behave like generalized Landau levels, supporting novel quantum phases.

Sarkar, S.; Wan, X.; Lin, S.-Z.; Sun, K. Symmetry-Based Classification of Exact Flat Bands in Single and Bilayer Moiré Systems. *Physical Review Letters*. 2025.

