

Dynamic Photonic Topology for Reconfigurable Routing

Scientific Achievement

A new theoretical framework enables the discovery of reconfigurable topology in nonlinear driven and dissipative systems.

Figure: Scheme for dynamical control over the topological mode's propagation path. (left) Schematic of an exciton-polariton topological Chern insulator. Energy is injected into the chiral edge mode (red) with a resonant laser and propagates along the boundary of the lattice to the output Port 2. (right) Illuminating the same nonlinear lattice with a non-resonant pump (blue) renders the lattice locally topologically trivial and leads to a different path of propagation for the topological mode.

Work was performed in part, at the Center for Integrated Nanotechnologies.

Office of
Science

Sandia
National
Laboratories

Wong, S.; Betzold, S.; Höfling, S.; Cerjan, A. Dynamically reconfigurable topological routing in nonlinear photonic systems. *Light: Science & Applications*. 2026.

<https://science.osti.gov/>