
Multipolar Skyrmion Crystals in Non-Kramers Doublet Systems

Panels E and F present enlarged views of MSkX-I and MSkX-II within a single magnetic unit cell (indicated by the dotted parallelogram). The orange circle marks a meron with a winding number \mathcal{W} =-1, the blue circle denotes an antimeron with \mathcal{W} =2, and the green circle indicates another antimeron with \mathcal{W} =-1.

Work was performed, in part, at the Center for Integrated Nanotechnologies.

Scientific Achievement

We present the first realistic mechanism for the emergence of multipolar skyrmion crystals — topological magnetic structures that can form in heavy fermion systems with an even number of outer-shell electrons.

Significance and Impact

Beyond advancing skyrmion research, our findings may also have broader implications for other areas of condensed matter physics, including altermagnetism and the study of hidden order effects.

Research Details

- Identify non-Kramers doublet as low energy degree of freedom in cubic crystal with f2 configuration.
- Derive Kondo lattice model based on symmetry principle
- Find the multipolar texture, particularly skyrmion crystals that emerge without the need for an external magnetic field
- Obtain spontaneous Hall effect for the multipolar skyrmion crystals, which provides a way to detect these elusive multipolar phases, often referred to as hidden orders.

Zhang, H.; Lin, S.-Z. Multipolar Skyrmion Crystals in Non-Kramers Doublet Systems. Physical Review Letters 2024, 133 (19).

https://science.osti.gov/