Custom-built microscopes for quantum sensing using nitrogen vacancies in diamond.
Utilize the long quantum coherence of nitrogen vacancies in diamond — the same property that makes them a potential qubit platform — to detect small magnetic fields in a widefield mode. This is accomplished by integrating magnetic materials onto the surface of nitrogen vacancy-implanted diamond, pumping nitrogen vacancies with 532 nm laser excitation and high-power microwaves, and detecting the magnetic field through photoluminescence.
Capabilities include:
Contact: Andy Mounce
Research Highlights:
Measurement and simulation of the magnetic fields from a 555 timer integrated circuit using a quantum diamond microscope and finite-element analysis
Kehayias, P.; Levine, E. V.; Basso, L.; Henshaw, J.; Ziabari, M. S.; Titze, M.; Haltli, R.; Okoro, J.; Tibbetts, D. R.; Udoni, D. M.; Bielejec, E.; Lilly, M. P.; Lu, T.-M.; Schwindt, P. D. D.; Mounce, A. M. Physical Review Applied 2022, doi.org/10.1103/PhysRevApplied.17.014021
Nanoscale solid-state nuclear quadrupole resonance spectroscopy using depth-optimized nitrogen-vacancy ensembles in Diamond
Henshaw, J.; Kehayias, P.; Ziabari, M. S.; Titze, M.; Morissette, E.; Watanabe, K.; Taniguchi, T.; Li, J. I. A.; Acosta, V. M.; Bielejec, E.; Lilly, M. P.; Mounce, A. M. Applied Physics Letters 2021, doi.org/10.1063/5.0083774
Towards deterministic creation of single photon sources in diamond using in-situ ion counting
Titze, M.; Byeon, H.; Flores, A. R.; Henshaw, J.; Harris, C. T.; Mounce, A. M.; Bielejec, E. S. axriv. 2021, doi.org/10.48550/arXiv.2112.02049