Center for Integrated Nanotechnologies

Helping you understand, create, and characterize nanomaterials

Quantum Diamond Magnetometry Microscope

Rapidly image magnetic fields of magnetic materials, image current through fabricated devices, or even reveal the nature of superconductivity in materials

Custom-built microscopes for quantum sensing using nitrogen vacancies in diamond.

Utilize the long quantum coherence of nitrogen vacancies in diamond — the same property that makes them a potential qubit platform — to detect small magnetic fields in a widefield mode. This is accomplished by integrating magnetic materials onto the surface of nitrogen vacancy-implanted diamond, pumping nitrogen vacancies with 532 nm laser excitation and high-power microwaves, and detecting the magnetic field through photoluminescence.

Capabilities include:

Contact: Andy Mounce

Research Highlights:
Measurement and simulation of the magnetic fields from a 555 timer integrated circuit using a quantum diamond microscope and finite-element analysis
Kehayias, P.; Levine, E. V.; Basso, L.; Henshaw, J.; Ziabari, M. S.; Titze, M.; Haltli, R.; Okoro, J.; Tibbetts, D. R.; Udoni, D. M.; Bielejec, E.; Lilly, M. P.; Lu, T.-M.; Schwindt, P. D. D.; Mounce, A. M. Physical Review Applied 2022,

Nanoscale solid-state nuclear quadrupole resonance spectroscopy using depth-optimized nitrogen-vacancy ensembles in Diamond
Henshaw, J.; Kehayias, P.; Ziabari, M. S.; Titze, M.; Morissette, E.; Watanabe, K.; Taniguchi, T.; Li, J. I. A.; Acosta, V. M.; Bielejec, E.; Lilly, M. P.; Mounce, A. M. Applied Physics Letters 2021,

Towards deterministic creation of single photon sources in diamond using in-situ ion counting
Titze, M.; Byeon, H.; Flores, A. R.; Henshaw, J.; Harris, C. T.; Mounce, A. M.; Bielejec, E. S. axriv. 2021,


Back to top